Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.349
Filtrar
1.
Pestic Biochem Physiol ; 199: 105803, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458661

RESUMO

Tobacco black shank (TBS) is a soil-borne fungal disease caused by Phytophthora nicotiana (P. nicotianae), significantly impeding the production of high-quality tobacco. Molybdenum (Mo), a crucial trace element for both plants and animals, plays a vital role in promoting plant growth, enhancing photosynthesis, bolstering antioxidant capacity, and maintaining ultrastructural integrity. However, the positive effect of Mo on plant biotic stress is little understood. This study delves into the inhibitory effects of Mo on P. nicotianae and seeks to unravel the underlying mechanisms. The results showed that 16.32 mg/L of Mo significantly inhibited mycelial growth, altered mycelial morphological structure, damaged mycelial cell membrane, and ultimately led to the leakage of cell inclusions. In addition, 0.6 mg/kg Mo applied in soil significantly reduced the severity of TBS. Mo increased photosynthetic parameters and photosynthetic pigment contents of tobacco leaves, upregulated expression of NtPAL and NtPPO resistance genes, as well as improved activities of SOD, POD, CAT, PPO, and PAL in tobacco plants. Furthermore, Mo could regulate nitrogen metabolism and amino acids metabolism to protect tobacco plants against P. nicotianae infection. These findings not only present an ecologically sound approach to control TBS but also contribute valuable insights to the broader exploration of the role of microelements in plant disease management.


Assuntos
Tabaco , Phytophthora , Molibdênio/farmacologia , Solo , Doenças das Plantas/microbiologia
2.
J Nanobiotechnology ; 22(1): 85, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429826

RESUMO

BACKGROUND: Impaired collateral formation is a major factor contributing to poor prognosis in type 2 diabetes mellitus (T2DM) patients with atherosclerotic cardiovascular disease. However, the current pharmacological treatments for improving collateral formation remain unsatisfactory. The induction of endothelial autophagy and the elimination of reactive oxygen species (ROS) represent potential therapeutic targets for enhancing endothelial angiogenesis and facilitating collateral formation. This study investigates the potential of molybdenum disulfide nanodots (MoS2 NDs) for enhancing collateral formation and improving prognosis. RESULTS: Our study shows that MoS2 NDs significantly enhance collateral formation in ischemic tissues of diabetic mice, improving effective blood resupply. Additionally, MoS2 NDs boost the proliferation, migration, and tube formation of endothelial cells under high glucose/hypoxia conditions in vitro. Mechanistically, the beneficial effects of MoS2 NDs on collateral formation not only depend on their known scavenging properties of ROS (H2O2, •O2-, and •OH) but also primarily involve a molecular pathway, cAMP/PKA-NR4A2, which promotes autophagy and contributes to mitigating damage in diabetic endothelial cells. CONCLUSIONS: Overall, this study investigated the specific mechanism by which MoS2 NDs mediated autophagy activation and highlighted the synergy between autophagy activation and antioxidation, thus suggesting that an economic and biocompatible nano-agent with dual therapeutic functions is highly preferable for promoting collateral formation in a diabetic context, thus, highlighting their therapeutic potential.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Células Endoteliais/metabolismo , Molibdênio/farmacologia , Molibdênio/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Peróxido de Hidrogênio/metabolismo , Autofagia
3.
Acta Biomater ; 178: 330-339, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432350

RESUMO

Cardiac pacing with temporary epicardial pacing wires (TEPW) is used to treat rhythm disturbances after cardiac surgery. Occasionally, TEPW cannot be mechanically extracted and remain in the thorax, where they may rarely cause serious complications like migration and infection. We aim to develop bioresorbable TEPW that will dissolve over time even if postoperative removal is unsuccessful. In the present study, we demonstrate a completely bioresorbable design using molybdenum (Mo) as electric conductor and the resorbable polymers poly(D, L-lactic-co-glycolic acid) (PLGA) and polycaprolactone (PCL) for electrically insulating double-coating. We compared the pacing properties of these Mo TEPW demonstrators to conventional steel TEPW in Langendorff-perfused rat hearts and observed similar functionality. In vitro, static immersion tests in simulated body fluid for up to 28 days elucidated the degradation behaviour of uncoated Mo strands and the influence of polymer coating thereon. Degradation was considerably reduced in double-coated Mo TEPW compared to the uncoated and the PLGA-coated condition. Furthermore, we confirmed good biocompatibility of Mo degradation products in the form of low cytotoxicity in cell cultures of human cardiomyocytes and cardiac fibroblasts. STATEMENT OF SIGNIFICANCE: Temporary pacing wires are routinely implanted on the heart surface to treat rhythm disturbances in the days following cardiac surgery. Subsequently, these wires are to be removed. When removal attempts are unsuccessful, wires are cut at skin level and the remainders are left inside the chest. Retained fragments may migrate within the body or become a centre of infection. These complications may be prevented using resorbable pacing wires. We manufactured completely resorbable temporary pacing wires using molybdenum as electrical conductor and assessed their function, degradation and biological compatibility. Our study represents an important step in the development of a safer approach to the treatment of rhythm disturbances after cardiac surgery.


Assuntos
Estimulação Cardíaca Artificial , Marca-Passo Artificial , Humanos , Animais , Ratos , Molibdênio/farmacologia , Implantes Absorvíveis , Pericárdio
4.
ACS Appl Mater Interfaces ; 16(13): 15931-15945, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38503698

RESUMO

Accurate pesticide delivery is a key factor in improving pesticide utilization, which can effectively reduce the use of pesticides and environmental risks. In this study, we developed a nanocarrier preparation method which can be controlled by pH/near-infrared response. Mesoporous molybdenum selenide (MoSe2) with a high loading rate was used as the core, poly(acrylic acid) (PAA) with acid response was used as the shell, and prochloraz (Pro) was loaded to form a pH-/near-infrared-responsive core-shell nanosystem (Pro@MoSe2@PAA NPs, abbreviated as PMP). Sclerotinia sclerotiorum infection secretes oxalic acid, forming an acidic microenvironment. In an acidic environment, PMP could quickly release Pro, and the cumulative release amount of Pro at pH = 5.0 was 3.1 times higher than that at pH = 7.4, and the efficiency of releasing Pro in the acidic environment was significantly enhanced. In addition, the release rate of PMP under near-infrared light irradiation was also significantly improved, and the cumulative release of Pro under simulated sunlight was 2.35 times higher than that under no light. The contact angles of PMP droplets on rapeseeds were reduced by 31.2 and 13.9% compared to Pro and MoSe2, respectively, which proved that the nanosystems had good wettability. In addition, PMP shows excellent adhesion and resistance to simulated rain washout. In the plate antibacterial experiment, the inhibitory effect of 0.5 µg/mL PMP on S. sclerotiorum was as high as 75.2% after 6 days, which showed a higher bactericidal activity than Pro. More importantly, PMP shows excellent biocompatibility and safety to plants, microorganisms, and cells. In a word, PMP is a green nanopesticide with a dual response of pH/near-infrared light, which provides a new strategy for the sustainable development of agriculture.


Assuntos
Imidazóis , Morfolinas , Nanopartículas , Compostos Organosselênicos , Praguicidas , Molibdênio/farmacologia , Molibdênio/química , Linhagem Celular Tumoral , Nanopartículas/química , Concentração de Íons de Hidrogênio
5.
J Trace Elem Med Biol ; 83: 127405, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38325181

RESUMO

INTRODUCTION: Metals and their metal ions have been shown to exhibit certain biological functions that make them attractive for use in biomaterials, for example in bone tissue engineering (BTE) applications. Recent data shows that Molybdenum (Mo) is a potent inducer of osteogenic differentiation in human bone marrow-derived mesenchymal stromal cells (BMSCs). On the other hand, while boron (B) has been shown to enhance vascularization in BTE applications, its impact on osteogenic differentiation is volatile: while improved osteogenic differentiation has been described, other data show that B might slow down osteogenic differentiation or reduce the calcification of the extracellular matrix (ECM) when applied in higher doses. Still, the combination of pro-osteogenic Mo and pro-angiogenic B is certainly attractive in the context of biomaterials intended for the use in BTE. METHODS: Therefore, the combined effect of molybdenum trioxide and boric acid at different ratios was investigated in this study to evaluate the effects on the viability, proliferation, osteogenic differentiation, ECM production and maturation of BMSCs. RESULTS: Mo ions proved to be stronger osteoinductive compared to B, in fact, while some osteogenic differentiation markers were downregulated in the presence of B, the presence of Mo provided compensation. The combined application of B and Mo indicated a combination of individual effects, partially even enhancing the expected combined performance of the single stimulations. CONCLUSIONS: The combination of B and Mo might be beneficial for BTE applications since the limited osteogenic properties of B can be compensated by Mo. Furthermore, since B is known to be pro-angiogenic, the combination of both substances may synergistically lead to improved vascularization and bone regeneration. Future studies should assess the angiogenic performance of this combination in greater detail.


Assuntos
Ácidos Bóricos , Células-Tronco Mesenquimais , Osteogênese , Humanos , Molibdênio/farmacologia , Medula Óssea , Células Cultivadas , Diferenciação Celular , Óxidos/farmacologia , Materiais Biocompatíveis/farmacologia
6.
Chembiochem ; 25(6): e202300679, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38205937

RESUMO

The connection between 3d (Cu) and 4d (Mo) via the "Mo-S-Cu" unit is called Mo-Cu antagonism. Biology offers case studies of such interactions in metalloproteins such as Mo/Cu-CO Dehydrogenases (Mo/Cu-CODH), and Mo/Cu Orange Protein (Mo/Cu-ORP). The CODH significantly maintains the CO level in the atmosphere below the toxic level by converting it to non-toxic CO2 for respiring organisms. Several models were synthesized to understand the structure-function relationship of these native enzymes. However, this interaction was first observed in ruminants, and they convert molybdate (MoO4 2- ) into tetrathiomolybdate (MoS4 2- ; TTM), reacting with cellular Cu to yield biological unavailable Mo/S/Cu cluster, then developing Cu-deficiency diseases. These findings inspire the use of TTM as a Cu-sequester drug, especially for treating Cu-dependent human diseases such as Wilson diseases (WD) and cancer. It is well known that a balanced Cu homeostasis is essential for a wide range of biological processes, but negative consequence leads to cell toxicity. Therefore, this review aims to connect the Mo-Cu antagonism in metalloproteins and anti-copper therapy.


Assuntos
Cobre , Metaloproteínas , Humanos , Cobre/metabolismo , Molibdênio/farmacologia , Molibdênio/uso terapêutico
7.
Ultrason Sonochem ; 102: 106749, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38217907

RESUMO

Photocatalytic MoS2 with visible light response is considered as a promising bactericidal material owing to its non-toxicity and high antibacterial efficiency. However, photocatalysts always exist as powder, so it is difficult to settle photocatalysts on the metal surface, which limits their application in aqueous environments. To solve this problem, ultrasound and sodium dodecyl sulfate (SDS) were introduced into the co-deposition process of MoS2 and zinc matrix, so that novel MoS2-Zn coatings were obtained. In this process, ultrasound and SDS strongly promoted the dispersion and adsorption of MoS2 on the co-depositing surfaces. Then MoS2 were proved to be composited into the Zn matrix with effective structures, and the addition of SDS effectively increased the loading content of MoS2 in the MoS2-Zn coatings. Besides, the antibacterial performance of the MoS2-Zn coatings was evaluated with three typical fouling bacteria E.coli, S.aureus and B.wiedmannii. The MoS2-Zn coating showed high and broad-spectrum antibacterial properties with over 98 % inhibition rate against these three bacteria. Furthermore, it is proved that the MoS2-Zn coatings generated superoxide (·O2-) and hydroxyl radicals (·OH) under visible light, which played the dominant and subordinate roles in the antibacterial process, respectively. The MoS2-Zn coatings also showed high antibacterial stability after four "light-dark" cycles. According to the results of the attached bacteria, the MoS2-Zn coatings were considered to effectively repel the living pelagic bacteria instead of killing the attached ones, which was highly environmentally friendly. The obtained MoS2-Zn coatings were considered promising in biofilm inhibiting and marine antifouling fields.


Assuntos
Galvanoplastia , Molibdênio , Dodecilsulfato de Sódio/química , Molibdênio/farmacologia , Molibdênio/química , Antibacterianos/farmacologia , Antibacterianos/química , Zinco/química , Escherichia coli
8.
Biomater Sci ; 12(3): 596-620, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38054499

RESUMO

Antibiotic resistance is a growing problem that requires alternative antibacterial agents. MoS2, a two-dimensional transition metal sulfide, has gained significant attention in recent years due to its exceptional photocatalytic performance, excellent infrared photothermal effect, and impressive antibacterial properties. This review presents a detailed analysis of the antibacterial strategies and mechanism of MoS2, starting with its morphology and synthesis methods and focusing on the different interaction stages between MoS2 and bacteria. The paper summarizes the main antibacterial mechanisms of MoS2, such as photocatalytic antibacterial, enzyme-like catalytic antibacterial, physical antibacterial, and photothermal-assisted antibacterial. It offers a comprehensive discussion focus on recent research studies of photocatalytic antibacterial mechanisms and categorizes them, guiding the application of MoS2 in the antibacterial field. Overall, the review provides an in-depth understanding of the antibacterial mechanisms of MoS2 and presents the challenges and future directions for the improvement of MoS2 in the field of high-efficiency antibacterial materials.


Assuntos
Antibacterianos , Molibdênio , Molibdênio/farmacologia , Antibacterianos/farmacologia , Catálise , Sulfetos
9.
Biomater Adv ; 156: 213701, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38039808

RESUMO

Pathological bacterial infection poses a serious threat to public health security. The excessive use of antibiotics has resulted in a serious decline in treatment effect and bacterial resistance. For the treatment of infected wounds, we compounded dopamine-assisted exfoliated molybdenum disulfide (MoS2@PDA) into lipoic acid modified chitosan (LAMC) to obtain a composite hydrogel dressing (LAMC-MoS2@PDA). LAMC-MoS2@PDA hydrogels exhibited excellent photothermal conversion ability and the LAMC-MoS2@PDA2 group (0.3 wt%) has a photothermal conversion efficiency of 26.29 %. Meanwhile, they showed good biocompatibility and ROS scavenging activity in vitro. Photothermal therapy usually utilizes photothermal agents to convert near-infrared light into heat energy for bacterial cell membrane destruction and bacterial protein inactivation. Under the near-infrared light irradiation, the antibacterial ratio of LAMC-MoS2@PDA hydrogels against Staphylococcus aureus and Escherichia coli reached nearly 100 %, and the morphology of the bacteria showed obvious contraction and cleavage. The hydrogels also showed an excellent antibacterial effect and wound healing promotion in the infected wound of rats. In particular, the LAMC-MoS2@PDA2 (+) group (with NIR) showed almost complete wound closure after 14 days, indicating that the LAMC-MoS2@PDA hydrogels have great potential in clinical anti-infected treatment.


Assuntos
Quitosana , Hidrogéis , Animais , Ratos , Hidrogéis/farmacologia , Molibdênio/farmacologia , Molibdênio/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias , Escherichia coli
10.
Int J Biol Macromol ; 255: 128522, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040141

RESUMO

In this investigation, we have explored the protective capacity of MoS2 QDs coated with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethyleneglycol) -2000] (DSPE-PEG) linked with (3-carboxypropyl) triphenylphosphonium-bromide (TPP), on the secondary structure of proteins in Alzheimer's disease (AD)-affected brain tissues. Using a cohort of fifteen male SWR/J mice, we establish three groups: a control group, a second group induced with AD through daily doses of AlCl3 and D-galactose for 49 consecutive days, and a third group receiving the same AD-inducing doses but treated with DSPE-PEG-TPP-MoS2 QDs. Brain tissues are meticulously separated from the skull, and their molecular structures are analyzed via FTIR spectroscopy. Employing the curve fitting method on the amide I peak, we delve into the nuances of protein secondary structure. The FTIR analysis reveals a marked increase in ß-sheet structures and a concurrent decline in turn and α-helix structures in the AD group in comparison to the control group. Notably, no statistically significant differences emerge between the treated and control mice. Furthermore, multivariate analysis of the FTIR spectral region, encompassing protein amide molecular structures, underscores a remarkable similarity between the treated and normal mice. This study elucidates the potential of DSPE-PEG-TPP-MoS2 QDs in shielding brain tissue proteins against the pathogenic influences of AD.


Assuntos
Doença de Alzheimer , Molibdênio , Animais , Humanos , Masculino , Camundongos , Doença de Alzheimer/tratamento farmacológico , Amidas , Encéfalo , Brometos , Molibdênio/farmacologia , Molibdênio/química
11.
Adv Healthc Mater ; 13(6): e2303211, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37947289

RESUMO

The complex pathological mechanism of Alzheimer's disease (AD) limits the efficacy of simple drug therapy, and drugs are difficult to penetrate the blood-brain barrier (BBB). Therefore, it is a breakthrough to enhance the therapeutic effect of AD by rationally using multiple therapeutic strategies to inhibit multiple pathological targets. In this study, macrophage membrane (MM) with active targeting inflammation function is used to functionalize molybdenum disulfide quantum dots (MoS2 QDs) with the properties of elimination of reactive oxygen species (ROS) and anti-Aß1-42 deposition to form the nano drug (MoS2 QDs/MM), and play the role of multi-target combined therapy with NIR. The results show that MoS2 QDs/MM has a targeted therapeutic effect on ROS elimination and anti-deposition of Aß1-42 . In addition, the combined therapy group effectively reduced Aß1-42 mediated cytotoxicity. The modification of MM could effectively target the brain, and NIR irradiation could actively increase the cross of BBB of materials. In vivo behavioral study also show that APP/PS1 mice in the combined treatment group showed the similar exploration desire and learning ability to mice in the group of WT. MoS2 QDs/MM is an excellent nano drug with multiple effects, which has advantages in the field of neurological diseases with crisscross pathogenesis.


Assuntos
Doença de Alzheimer , Dissulfetos , Pontos Quânticos , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Molibdênio/farmacologia , Espécies Reativas de Oxigênio , Macrófagos
12.
Biotechnol Appl Biochem ; 71(2): 326-335, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38112040

RESUMO

Nanostructures have been used for various biomedical applications due to their optical, antibacterial, magnetic, antioxidant, and biocompatible properties. Cancer is a prevalent disease that severely threatens human life and health. Thus, innovative and effective therapeutic approaches are urgently required for cancer. Photothermal therapy (PTT) is a promising approach to killing cancer cells. In this investigation, we developed a low-cost, simple, green technique to fabricate molybdenum trioxide nanostructures (MNs) using Opuntia ficus-indica mucilage as a template. Moreover, the MNs were functionalized with folic acid (FA) for cancer PTT. The X-ray diffractometer results revealed that the prepared MNs have an orthorhombic crystal phase. The transmission electron microscope image of MNs shows a flake shape with 20-150 nm diameter. The cytotoxicity of MNs and FA-conjugated MNs was studied in vitro. These cell viability assay results suggested that fabricated MoO3 nanostructures reduced 25% of cell viability in MCF-7 cells, even at high doses. However, even with high-dose treatment, FA/MNs do not cause significant cell death. Acridine orange/ethidium bromide (AO/EB) staining revealed DNA and chromatin condensation in MCF-7 cells exposed to MNs. Overall, the in vitro study results suggested that FA/MNs have excellent biocompatibility, which applies to biomedical applications. MNs dispersion temperature gradually increases from 26 to 58°C under 808 nm laser irradiation. We found significant mortality rates after NIR irradiation in MNs- or FA/MNs-treated MCF-7 cells. These findings suggest that FA/MNs can be used as an effective photothermal agent to treat breast cancer.


Assuntos
Neoplasias da Mama , Nanoestruturas , Óxidos , Humanos , Feminino , Fototerapia/métodos , Neoplasias da Mama/tratamento farmacológico , Nanoestruturas/química , Molibdênio/farmacologia , Molibdênio/química
13.
J Trace Elem Med Biol ; 82: 127368, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38150949

RESUMO

BACKGROUND: Hair loss is a common dermatological condition including various types such as alopecia areata, androgenetic alopecia, etc. Minoxidil is a topical medication used for treating hair loss, which is effective for various types of alopecia. However, minoxidil has limitations in treating hair loss, such as slow onset of action and low efficacy, and it cannot effectively inhibit one of the major pathogenic factors of hair loss - excessive oxidative stress. METHODS: Transition metal elements with rapid electron transfer, such as molybdenum, have been extensively studied and applied for inhibiting oxidative stress. We established a mouse model for hair growth and intervened with nano-sized molybdenum, minoxidil, and a combination of both. The physicochemical properties of nano-sized molybdenum enabled it to mediate oxidative stress more quickly. RESULTS: The results showed that nano-sized molybdenum can accelerate hair growth, increase the number of local hair follicles, and reduce the expression of oxidative stress-related molecules such as iNOS, COX2, and androgen receptors. The combination of nano-sized molybdenum and minoxidil showed an additive effect in promoting hair growth. CONCLUSION: Our findings suggest that nano-sized molybdenum might be a potential topical medication for treating hair loss by inhibiting the oxidative stress pathway. Nano-sized molybdenum, alone or in combination with minoxidil, could be a promising therapeutic approach for patients with hair loss, particularly those who do not respond well to current treatments. Further clinical studies are warranted to confirm the efficacy and safety of this novel treatment.


Assuntos
Alopecia em Áreas , Minoxidil , Animais , Camundongos , Humanos , Minoxidil/farmacologia , Minoxidil/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Molibdênio/farmacologia , Molibdênio/uso terapêutico , Método Duplo-Cego , Alopecia/tratamento farmacológico , Resultado do Tratamento
14.
ACS Appl Mater Interfaces ; 16(1): 201-216, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38127723

RESUMO

Conventional strontium-doped calcium polyphosphate (SCPP) ceramics have attracted a lot of attention due to good cytocompatibility and controlled degradation. However, their poor mechanical strength, brittleness, and difficulty in eliminating unavoidable postoperative inflammation and bacterial infections in practical applications limit their further clinical application. In this study, carboxylated molybdenum disulfide nanospheres (MoS2-COOH) were first prepared via a one-step hydrothermal method. The optimal doping concentration of MoS2-COOH was then incorporated into SCPP to overcome its poor mechanical strength. To further enhance the anti-inflammatory properties of scaffolds, metformin (MET) was loaded onto MoS2-COOH through covalent bond cross-linking (MoS2-MET). Then MoS2-MET was doped into SCPP (SCPP/MoS2-MET) according to the previously obtained concentration, resulting in the controlled and sustained release of MET from the SCPP/MoS2-MET scaffolds for 21 days in vitro. The SCPP/MoS2-MET scaffolds were shown to have good biological activity in vitro to promote stem cell proliferation and the potential to promote mineralization in vitro. It also showed good osteoimmunomodulatory activity could reduce the expression of proinflammatory factors and effectively induce the differentiation of BMSCs under inflammatory conditions, upregulating the expression of relevant osteoblastic cytokines. In addition, SCPP/MoS2-MET scaffolds could effectively inhibit Staphylococcus aureus and Escherichia coli. In vivo experiments also demonstrated better osteogenic potential of SCPP/MoS2-MET scaffolds compared with the other scaffold-samples. Thus, the introduction of carboxylated molybdenum disulfide nanospheres is a promising approach to improve the properties of SCPP and may provide a new modification strategy for inert ceramic scaffolds and the construction of multifunctional composite scaffolds for bone tissue engineering.


Assuntos
Dissulfetos , Nanosferas , Tecidos Suporte , Tecidos Suporte/química , Molibdênio/farmacologia , Osteoblastos , Regeneração Óssea
15.
J Nanobiotechnology ; 21(1): 463, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38044437

RESUMO

Bacterial infection in skin and soft tissue has emerged as a critical concern. Overreliance on antibiotic therapy has led to numerous challenges, including the emergence of multidrug-resistant bacteria and adverse drug reactions. It is imperative to develop non-antibiotic treatment strategies that not only exhibit potent antibacterial properties but also promote rapid wound healing and demonstrate biocompatibility. Herein, a novel multimodal synergistic antibacterial system (SNO-CS@MoS2) was developed. This system employs easily surface-modified thin-layer MoS2 as photothermal agents and loaded with S-nitrosothiol-modified chitosan (SNO-CS) via electrostatic interactions, thus realizing the combination of NO gas therapy and photothermal therapy (PTT). Furthermore, this surface modification renders SNO-CS@MoS2 highly stable and capable of binding with bacteria. Through PTT's thermal energy, SNO-CS@MoS2 rapidly generates massive NO, collaborating with PTT to achieve antibacterial effects. This synergistic therapy can swiftly disrupt the bacterial membrane, causing protein leakage and ATP synthesis function damage, ultimately eliminating bacteria. Notably, after effectively eliminating all bacteria, the residual SNO-CS@MoS2 can create trace NO to promote fibroblast migration, proliferation, and vascular regeneration, thereby accelerating wound healing. This study concluded that SNO-CS@MoS2, a novel multifunctional nanomaterial with outstanding antibacterial characteristics and potential to promote wound healing, has promising applications in infected soft tissue wound treatment.


Assuntos
Nanoestruturas , Óxido Nítrico , Molibdênio/farmacologia , Molibdênio/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanoestruturas/química , Regeneração
16.
Nanoscale ; 15(48): 19801-19814, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38051093

RESUMO

Peroxidase (POD)-like nanozymes are an upcoming class of new-generation antibiotics that are efficient for broad-spectrum antibacterial action. The POD-like activity employs the generation of reactive oxygen species (ROS), which have been utilized for bactericidal action. However, their intrinsic low catalytic activity and stability limit their bactericidal properties. In this study, we prepared a MoS2-based nanocomposite with copper peroxide nanodots (MoS2@CP) to achieve pH-dependent light-induced nanozyme-based antibacterial action. It has shown superior peroxidase and antibacterial activity at low pH. The mechanism behind the enhanced POD-like activity and high antibacterial activity was established. The mechanistic pathway involves estimating ROS generation, membrane depolarization, inner membrane permeabilization, metal ion release, and the effect of NIR on photothermal and photodynamic activities. Overall, our work highlighted the combinatorial approach for eradicating bacterial infections using enzyme-based antibacterial agents.


Assuntos
Cobre , Peróxidos , Cobre/farmacologia , Espécies Reativas de Oxigênio , Molibdênio/farmacologia , Peroxidase , Peroxidases , Antibacterianos/farmacologia , Corantes , Peróxido de Hidrogênio
17.
ACS Nano ; 17(23): 23872-23888, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38084420

RESUMO

Acute respiratory disease syndrome (ARDS) is a common critical disease with high morbidity and mortality rates, yet specific and effective treatments for it are currently lacking. ARDS was especially apparent and rampant during the COVID-19 pandemic. Excess reactive oxygen species (ROS) production and an uncontrolled inflammatory response play a critical role in the disease progression of ARDS. Herein, we developed molybdenum nanodots (MNDs) as a functional nanomaterial with ultrasmall size, good biocompatibility, and excellent ROS scavenging ability for the treatment of acute lung injury (ALI). MNDs, which were administered intratracheally, significantly ameliorated lung oxidative stress, inflammatory response, protein permeability, and histological severity in ALI mice without inducing any safety issues. Importantly, transcriptomics analysis indicated that MNDs protected lung tissues by inhibiting the activation of the Nod-like receptor protein 3 (NLRP3)-dependent pyroptotic pathway. This work presents a promising therapeutic agent for patients suffering from ARDS.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Humanos , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Molibdênio/farmacologia , Molibdênio/uso terapêutico , Molibdênio/metabolismo , Pandemias , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Pulmão/metabolismo , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Lipopolissacarídeos/farmacologia
18.
Molecules ; 28(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38138569

RESUMO

Among well-studied and actively developing compounds are polyoxometalates (POMs), which show application in many fields. Extending this class of compounds, we introduce a new subclass of polyoxometal clusters (POMCs) [Mo12O28(µ-L)8]4- (L = pyrazolate (pz) or triazolate (1,2,3-trz or 1,2,4-trz)), structurally similar to POM, but containing binuclear Mo2O4 clusters linked by bridging oxo- and organic ligands. The complexes obtained by ampoule synthesis from the binuclear cluster [Mo2O4(C2O4)2(H2O)2]2- in a melt of an organic ligand are soluble and stable in aqueous solutions. In addition to the detailed characterization in solid state and in aqueous solution, the biological properties of the compounds on normal and cancer cells were investigated, and antiviral activity against influenza A virus (subtype H5N1) was demonstrated.


Assuntos
Virus da Influenza A Subtipo H5N1 , Água , Modelos Moleculares , Molibdênio/farmacologia , Triazóis/farmacologia , Pirazóis/farmacologia , Antivirais/farmacologia
19.
Plant Physiol Biochem ; 205: 108203, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38000235

RESUMO

Molybdenum application holds the potential to enhance agricultural productivity. However, the precise impact on soil microbial diversity and mineral nutrient availability remains uncertain. In this study, we collected rhizosphere soil samples from different growth stages of broad beans. By analyzing mineral element contents, soil phosphorus and zinc fractions, as well as fungal and bacterial diversity, we observed that Mo application resulted in a reduction of soil Citrate‒P and HCl‒P content. This reduction led to an increase in available P content at different stages. Moreover, Mo application elevated root P concentration, but concurrently impeded the translocation of P to the shoots. Mo application also decreased the soil Exc‒Zn (exchangeable Zn) content while increasing the Res‒Zn (residual Zn) content, ultimately causing a decrease in available Zn content at different stages. Consequently, the Zn concentration within broad beans correspondingly decreased. Mo application fostered an augmentation in fungal richness and Shannon indices at the branching and podding stages. The analysis of microbial co-occurrence networks indicated that Mo application bolstered positive connectivity among fungal taxa. Remarkably, Mo significantly increased the abundance of Chaetomium, Leucosporidium, and Thielavia fungi. Spearman correlation analysis demonstrated a significant positive correlation between fungal diversity and soil available P content, as well as a notable negative correlation with soil available Zn content. These findings suggest that Mo application may modify the availability of soil P and Zn by influencing fungal diversity in the rhizosphere of crop soil, ultimately impacting nutrient accumulation within the grains.


Assuntos
Fabaceae , Vicia faba , Solo , Molibdênio/farmacologia , Rizosfera , Microbiologia do Solo , Minerais , Nutrientes
20.
Environ Sci Technol ; 57(51): 21637-21649, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38012053

RESUMO

Fully understanding the cellular uptake and intracellular localization of MoS2 nanosheets (NSMoS2) is a prerequisite for their safe applications. Here, we characterized the uptake profile of NSMoS2 by functional coelomocytes of the earthworm Eisenia fetida. Considering that vacancy engineering is widely applied to enhance the NSMoS2 performance, we assessed the potential role of such atomic vacancies in regulating cellular uptake processes. Coelomocyte internalization and lysosomal accumulation of NSMoS2 were tracked by fluorescent labeling imaging. Cellular uptake inhibitors, proteomics, and transcriptomics helped to mechanistically distinguish vacancy-mediated endocytosis pathways. Specifically, Mo ions activated transmembrane transporter and ion-binding pathways, entering the coelomocyte through assisted diffusion. Unlike molybdate, pristine NSMoS2 (P-NSMoS2) induced protein polymerization and upregulated gene expression related to actin filament binding, which phenotypically initiated actin-mediated endocytosis. Conversely, vacancy-rich NSMoS2 (V-NSMoS2) were internalized by coelomocytes through a vesicle-mediated and energy-dependent pathway. Mechanistically, atomic vacancies inhibited mitochondrial transport gene expression and likely induced membrane stress, significantly enhancing endocytosis (20.3%, p < 0.001). Molecular dynamics modeling revealed structural and conformational damage of cytoskeletal protein caused by P-NSMoS2, as well as the rapid response of transport protein to V-NSMoS2. These findings demonstrate that earthworm functional coelomocytes can accumulate NSMoS2 and directly mediate cytotoxicity and that atomic vacancies can alter the endocytic pathway and enhance cellular uptake by reprogramming protein response and gene expression patterns. This study provides an important mechanistic understanding of the ecological risks of NSMoS2.


Assuntos
Oligoquetos , Animais , Oligoquetos/metabolismo , Molibdênio/farmacologia , Transporte Biológico , Simulação por Computador , Imagem Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...